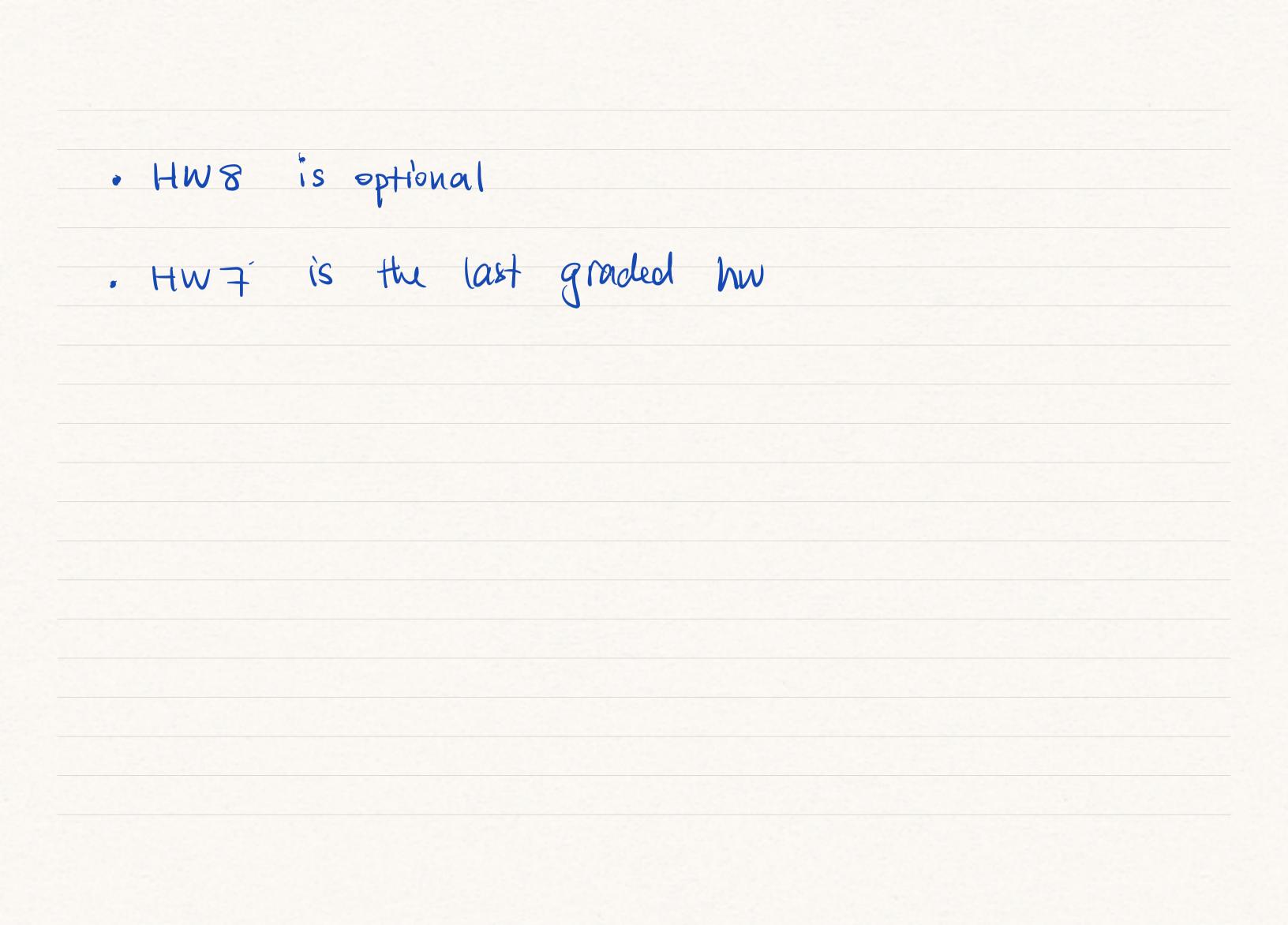
Markov Chain I

July 28, 2022



Example 1a

Toss an unfair coin $\mathbb{P}(\text{Head}) = p$ for N times. What's the fraction of time for observing heads out of all outcomes?

$$E(\#H) = NP$$
 #H ~ Binomial (

(N, P)

Example 1b

Now we have two unfair coins, each is biased to either head or tail.

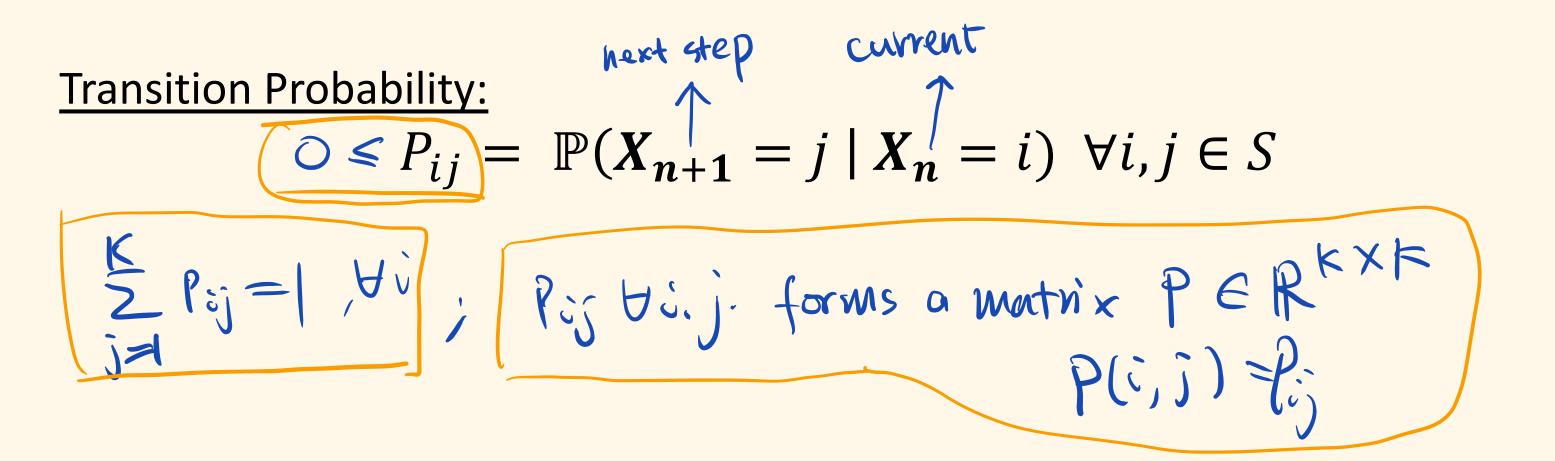
Coin 1: $\mathbb{P}(\text{Head}) = p$; Coin 2: $\mathbb{P}(\text{Head}) = 1 - p$.

If seeing head, then use coin 1 for next toss; if seeing tail, then use coin 2 for the next toss.

Toss N times, what's the fraction of time for observing heads out of all outcomes?

Markov Chain (Discrete Time Finite MC):

1.V. State Space: At each time step n, the state is denoted by X_n . The collection of all possible value a state can take is called the state space $S = \{1, 2, ..., K\}$ for a finite number K.



Markov Property $\mathbb{P}(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$ $= \mathbb{P}(X_{n+1} = j | X_n = i) = P_{ij}$

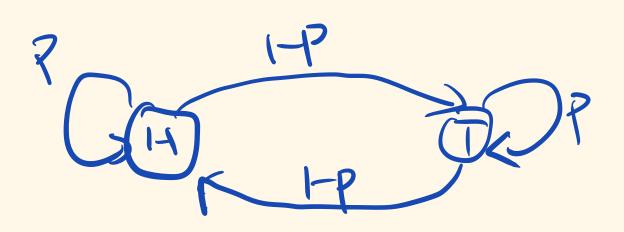
Example 1b

Now we have two unfair coins, each is biased to either head or tail.

Coin 1: $\mathbb{P}(\text{Head}) = p$; Coin 2: $\mathbb{P}(\text{Head}) = 1 - p$. If seeing head, then use coin 1 for next toss; if seeing tail, then use coin 2 for the next toss.

Toss N times, what's the fraction of time for observing heads out of all outcomes?

1: Head, Z: Touil $P_{11} = P$ $P_{12} = P$ $P_{12} = P$ $P_{12} = P$ 5=51,2] or S= {H,T}



$P = \begin{pmatrix} P & I - P \\ I - P & P \end{pmatrix}$

Example 2: Alice takes probability class.

Alice is either (1) up-to-date or (2) fall behind

 $P_{11} = 0.8, P_{12} = 0.2, P_{21} = 0.6 P_{22} = 0.4$ $P = \begin{bmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{bmatrix}$ 0.2 J-8 2 0.6

Probability of being in state *j*, at time step *n* $\pi_{n}(j) := P(\chi_{n} = j)$ o.g. $\pi_{n} = [\pi_{n}(1), \pi_{n}(2)]$ $T_{n}(j) = P(\mathbb{X}_{n}=j) = \sum_{i=1}^{K} P(\mathbb{X}_{n}=j|\mathbb{X}_{n+1}=i) P(\mathbb{X}_{n+1}=i)$ $= \sum_{i=1}^{k} P_{ij} \pi_{n-1}(i) \quad \forall j \in S$ To: initial distribution $T_n = T_{n-1}P$ $\pi_{o} - [\pi_{o}(1), \pi_{o}(2), \dots, \pi_{o}(k)]$ for S = {1, ..., 15} IXK IXK KXK $T_n = T_{n-1}P = \overline{T_n}P^2 = \cdots = T_0P^n$

Balance Equation

A distribution π is invariant for the transition probability P if it satisfies the balance equation

has many names $\pi P = \pi$ $z \pi(j) = 1$ T = invariant dist, stationary dist, steady-state prob.Thus: if $T_{u} = T_{0}$, $\forall n \ge 0 \iff T_{0}$ is invariant. TT is a row vector.

p does not de pend on o specific time point.

Example 2: Alice takes probability class.

Alice is either (1) up-to-date or (2) fall behind. Find the stationary distribution.

$$P_{11} = 0.8, P_{12} = 0.2, P_{21} = 0.6 P_{22} = 0.$$

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{bmatrix} \qquad T = T P \implies T_1 = T \\ T_2 = T \\ T_2 = T \\ T_2 = 5 - 2T_1 + 0.6 T \\ T_2 = 5 - 2T_1 + 0.4 \\ T_2 = T \\ T_1 = T \\ T_2 = 5 - 2T_1 + 0.4 \\ T_2 = T \\ T_1 = T \\ T_1 = T \\ T_2 = T \\ T_1 =$$

 $T(i) := P(X_n - i)$

.4 LPu +TIZPZI IT, P12+ TT2P2

 $\pi_1 = 0.75$ $\pi_2 = 0.23$

 $2\pi(c) = 1$

Properties of Markov Chain

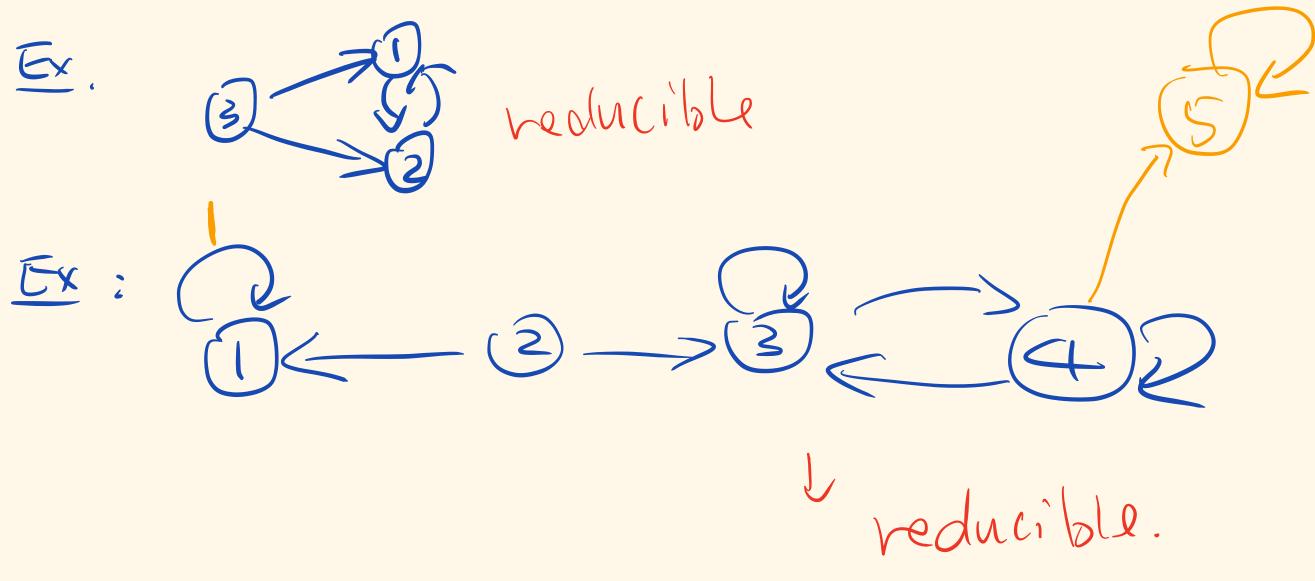
Q1: Does an invariant distribution always exist? Q2: Is it unique? Q3: Does π_n approach an invariant distribution? $\int_{\mathcal{T}_n(j)} = \Pr(\chi_n = j)$

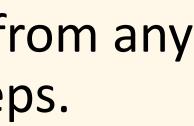
T

Properties of Markov Chain

Irreducibility

A Markov chain is irreducible if it can go from any state to any other state, possibly after many steps.





Properties of Markov Chain

(a)periodicity

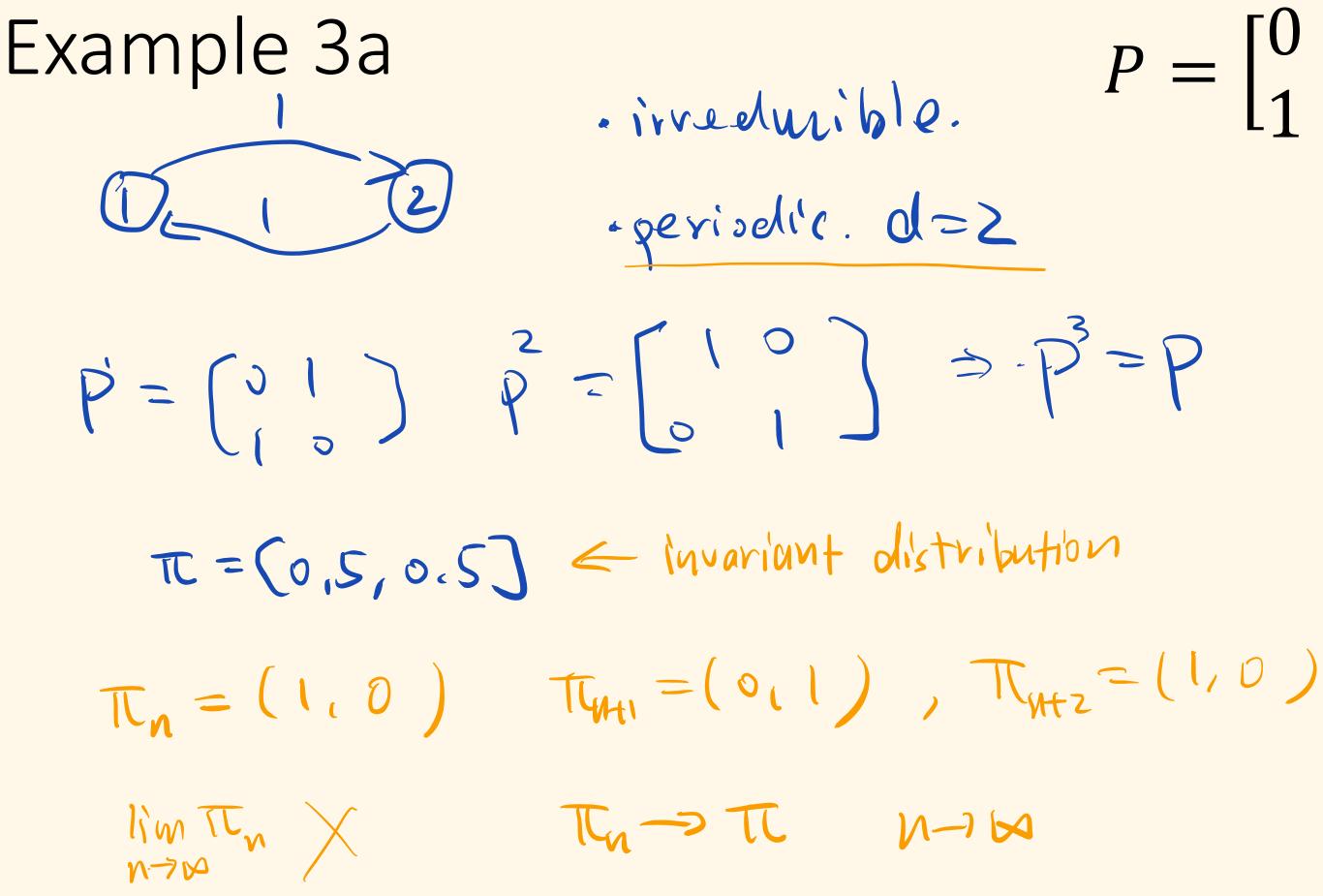
for an irreducible Markov Chain defined on state space S with transition probability P.

Let

$$d(i) \coloneqq \gcd\{n \ge 1 | P^n(i,i) >$$

Then, d(i) has some value for all i, d(i) = d. \leftarrow see proof in the end * the period of states is the same as the If d=1, MC is aperiodic period of this MC. if MC is irreducible. If d>1, MC is periodic with period d.

0}



$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Example 3b: Alice studies Markov Chain

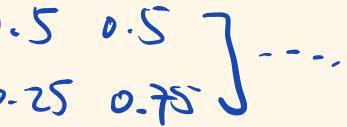
Find the invariant distribution of Alice's study status.

 $P = \begin{bmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{bmatrix} \qquad P^{n}(i,i) > 0 \qquad \forall n$ $d = 1, \qquad \text{apeniodic}$ $P : P^{2} : P^{n} = \begin{bmatrix} 0.75 & 0.75 \\ 0.75 & 0.75 \end{bmatrix}$

 $\pi p = \pi \implies \pi = [0.75, 0.25]$

Example 3c: Find the invariant distribution. $\frac{1}{2} = \begin{bmatrix} 0 & 1 \\ 0.5 & 0.5 \end{bmatrix}, p = \begin{bmatrix} 0 & 1 \\ 0.5 & 0.5 \end{bmatrix}, p = \begin{bmatrix} 0.5 & 0.5 \\ 0.25 & 0.75 \end{bmatrix}$ 0.5 d = 1 $\pi = \pi p \implies \pi = [0.5, 0.5]$

A(n) <u>irreducible</u> Markov Chain with <u>self-loop</u> is aperiodic. note: the reverse is not true; counter example: random walk on a triangle.

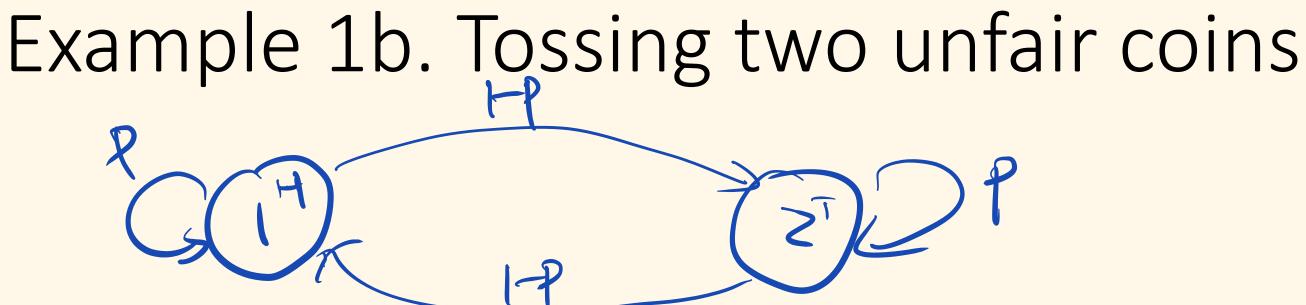


Theorem for Markov Chain

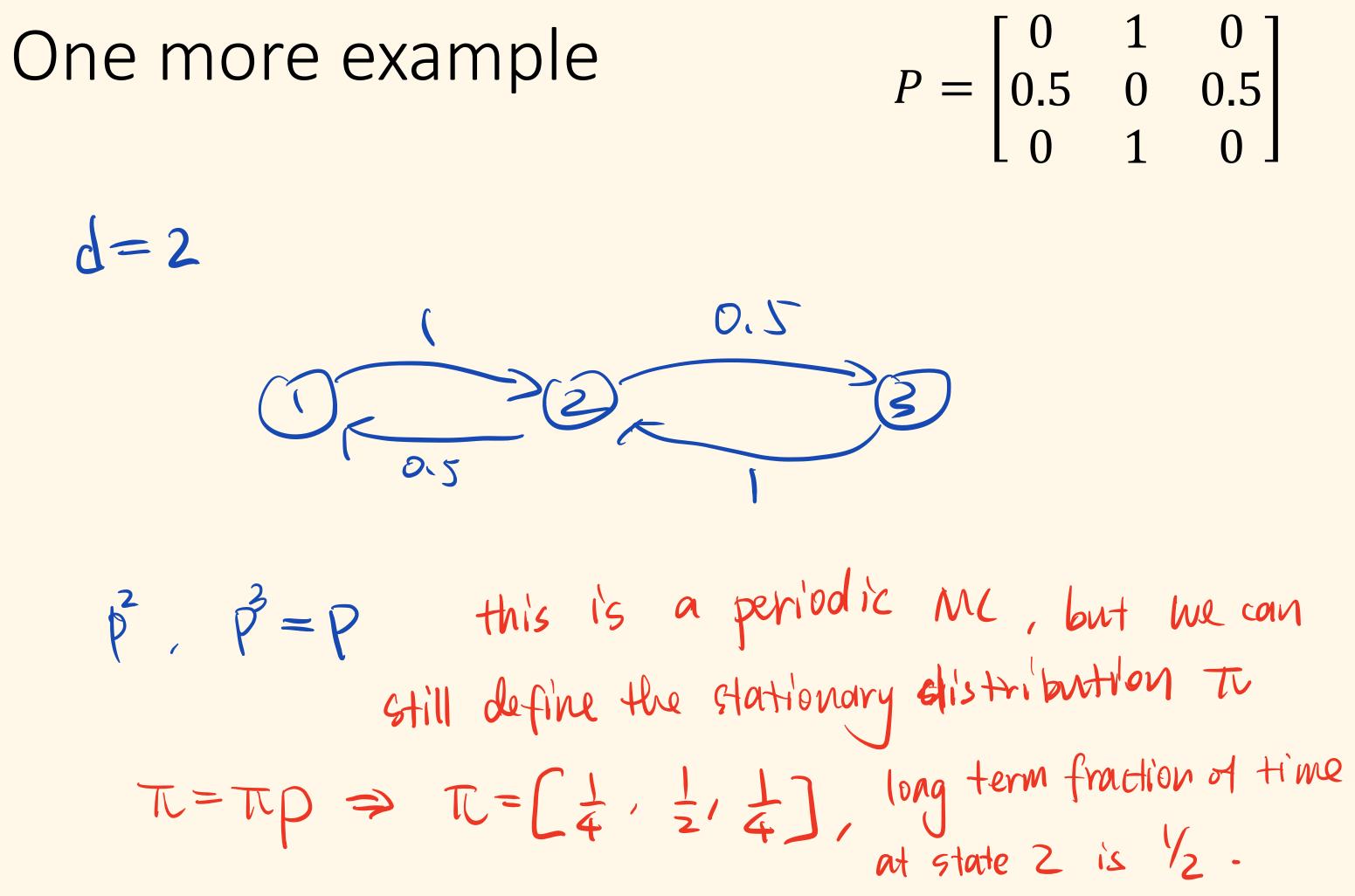
1) If a Markov Chain is finite and irreducible: it has unique invariant distribution to and. TTLi) long topm frontion of time. $\lim_{N \to \infty} \frac{1}{N} = \frac{1}{2} I \left\{ \{ \hat{X}_n = i \} = TI(i) \}$ invariant 2) If this Markov Chain is also aperiodic: then $\pi_n \rightarrow \pi$, $n \rightarrow 12$ $\pi_n \quad \pi_{n+1} \quad \pi_{n+2} = \pi_n \quad \pi_{n+2} = \pi_{n+1}$

does not matter if the ML is peniodic or not

distribution



 $\pi = \left[0.5, 0.5 \right]$



$P = \begin{bmatrix} 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{bmatrix}$

red for exams.

as some value

d(i)) = d(j)

Mc is irreducible,
$$sD \equiv m$$
, $p^{m}(j, i) > 0$ &
now by definition of d(i)
 $\exists N$, such that $p^{N}(i, i) > 0$ and $p^{N+div}(i)$
 $p^{m+N+n}(j, j) > 0$ and $p^{m+N+div}+div+n$
 $p^{m+N+n}(j, j) > 0$ and $p^{m+N+div}+div+n$
 $= \sum_{k} \frac{k+div}{n+N+n}, \frac{m+N+div}{n} + n \in \{n \ge 1 \mid p^{n}$
so $d(j) \le d(i)$ because $g(d \le k, k+div), \dots \le 1$
reverse i, j . do it again we have $d(i) \le d(j)$
 ≤ 0 $d(i) = d(j)$ $\forall i \neq j$

$\exists n p^{n}(i,j) > 0$

(), () >>

J.j) >>

¹(j,j)>∂} ≤ d(i)

